A Theorem on Nonempty Intersection of Convex Sets and its Application

T. Ando

Research Institute of Applied Electricity, Hokkaido University, Sapporo, Japan Communicated by P. L. Butzer

> DEDICATED TO PROFESSOR G. G. LORENTZ ON THE OCCASION OF HIS SIXTY-FIFTH BIRTHDAY

1. INTRODUCTION

Several important properties in theory of Banach spaces can be formulated in terms of nonemptiness of a finite number of closed convex subsets. For instance, a Banach space, ordered with a closed cone K, is directed if and only if the intersection $K \cap (x + K)$ is nonempty for every vector x. As another example, consider a Banach space E and a closed subspace J. Then the image of a closed convex subset S under the quotient map from Eto E/J is closed if and only if the intersection $S \cap (x + J)$ is nonempty for every x in the closure of S + J.

In discussing nonemptiness of intersection of convex subsets of a Banach space E, it is usually convenient to imbed E canonically into the second dual E^{**} and to use weak^{**}, that is, $\sigma(E^{**}, E^*)$, compactness of the unit ball of E^{**} . Given closed convex subsets S_i (i = 1, 2) of E, sometimes the non-emptiness of $S_1^{\sim} \cap S_2^{\sim}$ is guaranteed quite easily, where S_i^{\sim} denotes the weak^{**} closure of S_i . The problem studied in this paper is to find a condition which transfers the nonemptiness of $S_1^{\sim} \cap S_2^{\sim}$ to that of $S_1 \cap S_2$.

In the next section we shall formulate a useful sufficient condition for nonemptiness of intersection (Theorem 1), which can be viewed as an abstract version of the so-called " $\frac{1}{2}n$ -technique." In the subsequent section this theorem is applied to reproduce various known results on images of closed convex sets under a quotient map. These results can be considered as general versions of the so-called "dominated extension theorems."

In the final section we shall treat a closed subspace J of a Banach space E whose weak^{**} closure is the range of a projection in E^{**} . The problem in this section is to find a condition which assures that J itself is the range of a projection in E. On the basis of tensor product method, a variant of

Theorem 1 is effectively applied to yield general versions (Theorem 5) of the so-called "linear extension theorems."

2. NONEMPTY INTERSECTION

Let E be a (real or complex) Banach space with closed unit ball U.

Before going into the subject, let us recall some computational rules for weak^{**} closure. As stated in Introduction, the weak^{**} closure S^{\sim} is the closure of S in E^{**} with respect to the topology $\sigma(E^{**}, E^*)$ while S⁻ denotes the norm closure. Obviously U^{\sim} is the closed unit ball of the second dual E^{**} , and $(S + U)^{\sim} = S^{\sim} + U^{\sim}$ and $S^{\sim} \cap E = S^{-}$ for every convex subset S. Given convex subsets S_1 and S_2 of E, if S_1^{\sim} has nonempty intersection with S_2^{\sim} then by the Hahn-Banach theorem $S_1 + \epsilon U$ has non-empty intersection with the interior of S_2 then by the bipolar theorem $(S_1 \cap S_2)^{\sim}$ coincides with $S_1^{\sim} \cap S_2^{\sim}$.

THEOREM 1. Let S_i (i = 1, 2) be closed convex subsets of E. If $S_1^{\sim} \cap S_2^{\sim}$ is nonempty and if there are constants $0 \leq \alpha, \beta$ and $0 \leq \gamma < 1$ such that

$$S_1 \cap (S_2 + \lambda U) \subseteq \alpha \lambda U^{\sim} + (1 + \beta \lambda) \{S_1^{\sim} \cap (S_2^{\sim} + \gamma \lambda U^{\sim})\} \qquad (\lambda > 0), \quad (*)$$

then $S_1 \cap S_2$ is nonempty. If further $\beta = 0$ then

$$S_1 \cap (S_2 + \lambda U) \subseteq S_1 \cap S_2 + \alpha' \lambda (1 - \rho)^{-1} U \quad (\lambda > 0, 1 > \rho > \gamma \text{ and } \alpha' > \alpha).$$

Proof. Take ρ with $\gamma < \rho < 1$ and α' with $\alpha < \alpha'$. Fix x_0 in $S_1 \cap (S_2 + \lambda U)$. Suppose that $x_0, ..., x_n$ can be chosen so as to satisfy the conditions:

$$x_j \in \delta_j \{S_1 \cap (S_2 + \lambda \rho^j U)\}$$
 and $x_j - x_{j-1} \in \alpha' \lambda \delta_{j-1} \rho^{j-1} U$ $(j = 0, 1, ..., n)$

where

$$x_{-1} = x_0, \delta_{-1} = \delta_0 = 1$$
 and $\delta_j = \prod_{k=0}^{j-1} (1 + \beta \lambda \rho^k).$

. .

Since by (*)

$$x_n \in \delta_n \{ S_1 \cap (S_2 + \lambda \rho^n U) \} \subseteq \alpha \lambda \delta_n \rho^n U^{\sim} + \delta_{n+1} \{ S_1^{\sim} \cap (S_2^{\sim} + \lambda \rho^{n+1} U^{\sim}) \},$$

it follows that $(x_n + \alpha \lambda \delta_n \rho^n U)^{\sim}$ has nonempty intersection with $\delta_{n+1}\{S_1 \cap (S_2 + \lambda \rho^{n+1}U)\}^{\sim}$. Since $x_n + \alpha' \lambda \delta_n \rho^n U$ is a convex neighborhood of $x_n + \alpha \lambda \delta_n \rho^n U$, there is a vector, say x_{n+1} , in the intersection of $x_n + \alpha' \lambda \delta_n \rho^n U$ and $\delta_{n+1}\{S_1 \cap (S_2 + \lambda \rho^{n+1}U)\}$. Then $x_{n+1} - x_n \in \alpha' \lambda \delta_n \rho^n U$.

This completes the inductive construction of a sequence $\{x_j\}$. Since $\sum_{n=0}^{\infty} \rho^n = (1-\rho)^{-1}$ and $1 \leq \delta_n \leq \exp(\beta\lambda(1-\rho)^{-1})$, $\{\delta_n^{-1}x_n\}$ is a Cauchy sequence such that $\delta_n^{-1}x_n \in S_1$ and $\|\delta_n^{-1}x_n - S_2\| \leq \lambda\rho^n$. The limit x must belong to $S_1 \cap S_2$. Finally if $\beta = 0$ then $\delta_n = 1$, hence

$$\|x-x_0\| \leqslant \sum_{n=1}^{\infty} \|x_n-x_{n-1}\| \leqslant \alpha' \lambda \sum_{n=0}^{\infty} \rho^n - \alpha' \lambda (1-\rho)^{-1}.$$

This completes the proof.

Let us give some elementary applications of Theorem 1 to theory of ordered Banach spaces. Now let E be a real Banach space, ordered by the closed convex cone E_{\pm} .

If E_+ generates E^{**} , that is, $E^{**} = E_+ - E_+$ then E_+ generates E.

In fact, it is readily shown by contradiction that

$$U^{\sim} \subseteq E_{+}^{\sim} \cap \gamma U^{\sim} - E_{+}^{\sim} \cap \gamma U^{\sim}$$
 for some $\gamma > 0$.

Take x in E. Then

$$(x + E_+) \cap (E_+ + \lambda U) \subseteq \gamma \lambda U^{\sim} + (x + E_+)^{\sim} \cap E_+^{\sim} \qquad (\lambda > 0).$$

Now Theorem 1 guarantees the nonemptiness of $(x + E_+) \cap E_+$, or equivalently $x \in E_+ - E_+$.

If E^{**} becomes a vector lattice (Riesz space) under the order induced by E_+^{\sim} and if $(U^{\sim} - E_+^{\sim}) \cap (U^{\sim} + E_+^{\sim})$ is bounded, then E has the Riesz interpolation property, that is, $x_i \leq y_j$ (i, j = 1, 2) in E implies the existence of z in E with $x_i \leq z \leq y_i$ (i = 1, 2).

In fact, with $S_1 = (x_1 + E_+) \cap (x_2 + E_+)$ and $S_2 = (y_1 - E_+) \cap (y_2 - E_+)$ it is readily shown that

$$S_1^{\sim} = \{z \in E^{**}; z \geqslant x_1 \lor x_2\} \quad \text{and} \quad S_2^{\sim} = \{z \in E^{**}; z \leqslant y_1 \land y_2\}.$$

Hence $S_1 \sim \cap S_2 \sim$ is nonempty and for some $\alpha > 0$,

$$S_1 \cap (S_2 + \lambda U) \subseteq lpha \lambda U^{\sim} + S_1^{\sim} \cap S_2^{\sim} \qquad (\lambda > 0).$$

Now Theorem 1 guarantees nonemptiness of $S_1 \cap S_2$, or equivalently the existence of z in question.

In this way Theorem 1 can provide a unified way of proof for various duality properties developed, for instance, in [4] and [11].

160

3. QUOTIENT

Again E is a Banach space with closed unit ball U. Let J be a closed subspace and let τ denote the quotient map from E to E/J. J^{\perp} denotes the annihilator of J in E^* . The problem in this section is to find conditions which guarantee the closedness of $\tau(S)$ for a closed convex subset S of E. For this purpose, it is convenient to convert Theorem 1 to the following form.

PROPOSITION 2. Let S_i (i = 1, 2) be closed convex subsets of E. If $J \subseteq S_1 \subseteq S_2^{\sim} + J^{\sim}$ and if there are constants $0 < \alpha$ and $0 \leq \gamma < 1$ such that

$$S_1 \cap (S_2 + \lambda U) \subseteq lpha \lambda (J^{\sim} \cap U^{\sim}) + S_2^{\sim} + \gamma \lambda U^{\sim} \qquad (\lambda > 0), \qquad (**)$$

then

$$S_1 \cap (S_2 + \lambda U) \subseteq S_2 + \alpha \lambda (1 - \rho)^{-1} (J \cap U) \qquad (\lambda > 0, 1 > \rho > \gamma).$$

In particular, $\tau(S_1)$ is contained in $\tau(S_2)$.

Proof. Take x in S_1 and let $S_0 = x + J$. Then $x \in S_2^* + J^*$ implies $S_0^* \cap S_2^* \neq \emptyset$. Now by (**)

$$S_0 \cap (S_2 + \lambda U) \subseteq S_1 \cap (S_2 + \lambda U) \subseteq \alpha \lambda (J^{\sim} \cap U^{\sim}) + S_2^{\sim} + \gamma \lambda U^{\sim},$$

which implies

$$S_0 \cap (S_2 + \lambda U) \subseteq lpha \lambda U^{\sim} + S_0^{\sim} \cap (S_2^{\sim} + \gamma \lambda U^{\sim}).$$

Then Theorem 1 yields

$$x \in S_0 \cap (S_2 + \lambda U) \subseteq S_2 + \alpha \lambda (1 - \rho)^{-1} (J \cap U).$$

This completes the proof.

As an immediate application of Proposition 1 to theory of ordered Banach spaces, let us take up the following proposition.

If a closed cone E_+ of a real Banach space E satisfies the condition that for some constant $\alpha \ge 1$ and for every positive linear functional f

$$\|f-[0,f]\cap J^{\perp}\|\leqslant \alpha \|f-J^{\perp}\|,$$

where [0, f] denotes the set $\{g \in E^*; 0 \leq g \leq f\}$ then the image $\tau(E_+)$ is closed.

In fact, the bipolar theorem converts the above condition to the following inclusion relation:

$$(E_+ + J)^- \cap (E_+ + \lambda U) \subseteq \alpha \lambda (J^- \cap U^-) + E_+^-.$$

Apply Proposition 1 with $S_1 = (E_+ + J)^-$ and $S_2 = E_+$, to yield $(E_+ + J)^- \subseteq E_+ + J$.

A closed subspace is called a *summand* if it is the range of a (continuous linear) projection. In this respect a closed subspace J of E is called an *ideal* if its annihilator J^{\perp} is a summand of E^* . Remark that J is an ideal if and only if there is a (continuous linear) operator T from E to the second dual E^{**} such that T vanishes on J and x - Tx belongs to J^{\sim} for every $x \in E$. In fact, if P is a projection from E^* to J^{\perp} then the restriction of P^* to E possesses the required properties. Conversely if T is an operator in question and if Φ denotes the canonical imbedding of E^* to the third dual E^{***} then $T^* \circ \Phi$ is a projection to J^{\perp} .

Now let J be an ideal and let P be a projection from E^* to J^{\perp} . A closed convex subset S of E is said to be *splittable*, more precisely P-splittable, if it contains the origin and if $P^*x + y - P^*y$ belongs to S[~] for every x, y in S. Remark (cf. [5]) that S is splittable if and only if the polar S⁰ coincides with the norm closed convex hull of $P(S^0) \cup Q(S^0)$ where Q = 1 - P.

A basic fact in [5] is that if S_i (i = 1, 2) are splittable then

$$\begin{aligned} (S_1 + J)^- &\cap (S_2 + J)^- \cap \{S_1 \cap (S_2 + \epsilon U)^- + \lambda U\} \\ &\subseteq \alpha \lambda (J^- \cap U^-) + S_1^- \cap (S_2 + \alpha \epsilon U)^- \quad (\lambda > 0, \, \epsilon > 0), \quad (\#) \end{aligned}$$

where $\alpha = || 1 - P ||$. Further if $(S_1 \cap S_2)^{\sim}$ coincides with $S_1^{\sim} \cap S_2^{\sim}$ then ϵ can be put equal to 0.

Let us reprove a main result of [5]:

PROPOSITION 3. Let S_i (i = 1, 2) be splittable. Then

- (1) $\tau(S_i)$ is closed.
- (2) If $(S_1 \cap S_2)^{\sim} = S_1^{\sim} \cap S_2^{\sim}$ then $\tau(S_1)^{\sim} \cap \tau(S_2)^{\sim} = \tau(S_1 \cap S_2)$.
- (3) If $||1 P|| \leq 1$ then $\tau(S_1) \cap \tau(S_2) \subseteq \tau(S_1 \cap (S_2 + \epsilon U))$ ($\epsilon > 0$).

Proof. (1) follows (2) with $S_1 = S_2$. (2) and (3) result from (#) by Proposition 2, applied to $(S_1 + J)^- \cap (S_2 + J)^-$ and $S_1 \cap (S_2 + \epsilon U)^-$.

Proposition 3 unifies so-called "dominated extension theorems" of various types developed in [2, 3, 7, 8] through suitable construction of P from an operator T as remarked earlier.

A closed subspace J is called an *M*-ideal if its annihilator J^{\perp} is the range of a projection P such that

$$||f|| = ||Pf|| + ||f - Pf|| \qquad (f \in E^*),$$

or equivalently

$$||x|| = \max(||P^*x||, ||x - P^*x||) \quad (x \in E^{**}).$$

Alfsen and Effros [1] showed that a projection with this property is uniquely determined, and that an *M*-ideal *J* can be characterized by the following ball-intersection properties: if open balls O_i (i = 1,...,n) have nonempty intersection and if each has nonempty intersection with *J* then $J \cap O_1 \cap O_2 \cap \cdots \cap O_n$ is nonempty.

It is clear that an ideal J is an M-ideal if and only if the unit ball is splittable. Now it follows as an immediate consequence of Proposition 3:

If J is an M-ideal then $\tau(U)$ is closed.

Application of Proposition 3 to various problems in ordered Banach spaces can be found in [5].

Finally let us give a simple proof to a result in [5] on the basis of Proposition 2.

If J is an M-ideal and if N is a closed subspace such that for some constant $0 \leq \gamma < 1$

$$\|Pg - J^{\perp} \cap N^{\perp}\| \leqslant \gamma \|g - Pg\| \quad (g \in N^{\perp}),$$

then for $x \in N$ with $|| \tau(x) || \leq 1$ there is $y \in N$ such that $|| y || \leq 1$ and $\tau(x) = \tau(y)$.

In fact, the bipolar theorem converts the condition to the relation

$$N \cap (J+U)^{-} \cap (1+\lambda)U \subseteq 2\lambda \{U^{\sim} \cap (N \cap J)^{\sim}\} + (1+\gamma\lambda) U^{\sim}.$$

Now apply Proposition 2 with $S_1 = N \cap (J + U)^-$ and $S_2 = U$ and with $N \cap J$ instead of J.

4. LINEAR LIFTING

An ideal J of a Banach space E becomes a summand if and only if the quotient map τ from E to E/J has a (continuous) right inverse. Indeed, a right inverse ζ gives rise to the projection $\zeta \circ \tau$ whose kernel coincides with J. The problem in this section is to find conditions which assure the existence of a right inverse.

When H is a subspace of E/J, a (continuous linear) operator ψ from H to E is called a *linear lifting* if $\tau \circ \psi$ is the identity on H. Let $\mathfrak{B}(H, E)$ denote the space of (continuous linear) operators from H to E, equipped with operator norm. If H is finite dimensional, the second dual of $\mathfrak{B}(H, E)$ is identified with $\mathfrak{B}(H, E^{**})$.

A Banach space is called a *Lindenstrauss space* if its second dual is isometric to the space of continuous functions on a compact Hausdorff space. Lindenstrauss [9] gave an intrinsic characterization of such a space by the following intersection property: a finite number of closed balls has nonempty intersection whenever every pair among them has non-empty intersection. **PROPOSITION** 4. Let J be an M-ideal and let H be a finite dimensional subspace of E|J. Suppose that ζ_0 is a linear lifting from a subspace G of H with $\|\zeta_0\| \leq 1$. Then for each $\epsilon > 0$ there is a linear lifting ζ from H such that $\|\zeta\| \leq 1$ and $\|\zeta_0 - \zeta\|_G \| < \epsilon$ if one of the following conditions is satisfied:

- (1) there is a projection π from H to G with $\|\pi\| \leq 1$.
- (2) J is a Lindenstrauss space.

Proof. Since J is an M-ideal its annihilator J^{\perp} is the range of a (uniquely determined) projection P such that

$$|x| = \max(||P^*x||, ||x - P^*x||) \quad (x \in E^{**}).$$

Consider two subspaces in $\mathfrak{B}(H, E)$

 $\mathfrak{M} = \{\psi; \operatorname{ran}(\psi) \subseteq J \text{ and } \ker(\psi) \supseteq G\} \qquad \text{and} \qquad \mathfrak{N} = \{\psi; \operatorname{ran}(\psi) \subseteq J\},\$

and let \mathfrak{B} denote the closed unit ball of $\mathfrak{B}(H, E)$. As shown in [5], under the identification of $\mathfrak{B}(H, E^{**})$ with the second dual of $\mathfrak{B}(H, E)$, the weak^{**} closures of \mathfrak{M} and \mathfrak{N} coincide, respectively, with

 $\{\psi; \operatorname{ran}(\psi) \subseteq J^{\sim} \text{ and } \ker(\psi) \supseteq G\}$ and $\{\psi; \operatorname{ran}(\psi) \subseteq J^{\sim}\}.$

Since $\psi \mapsto P^* \circ \psi$ defines a projection in $\mathfrak{B}(H, E^{**})$ with kernel \mathfrak{R}^{\sim} such that

$$\|\psi\| = \max(\|P^* \circ \psi\|, \|\psi - P^* \circ \psi\|) \qquad (\psi \in \mathfrak{B}(H, E^{**})),$$

 \mathfrak{N} is an *M*-ideal. Take a linear lifting ζ_1 from *H* to *E* with $\zeta_1|_{\mathfrak{S}} = \zeta_0$. Suppose that ζ_1 belongs to $(\mathfrak{V} + \mathfrak{M})^*$. Then there is an operator ζ_2 in $(\zeta_1 + \mathfrak{M}) \cap (1 + \epsilon/2)\mathfrak{V}$, which is contained in $(\mathfrak{V} + \mathfrak{N})^+ \cap (1 + \epsilon/2)\mathfrak{V}$. Since \mathfrak{N} is an *M*-ideal, in view of Propositions 2 and 3 $(\mathfrak{V} + \mathfrak{N})^+ \cap (1 + \epsilon/2)\mathfrak{V}$ is contained in $\mathfrak{V} + \epsilon(\mathfrak{N} \cap \mathfrak{V})$. Thus there is ζ such that $\|\zeta\| \leq 1$, $\|\zeta - \zeta_2\| \leq \epsilon$ and $\zeta - \zeta_2 \in \mathfrak{N}$. Then ζ meets the requirement of the assertion. Now it remains to prove that ζ_1 is contained in $(\mathfrak{V} + \mathfrak{M})^*$.

(1) Suppose that there is a projection π from H to G with $||\pi|| \le 1$. Then it follows with Q = 1 - P that

$$\zeta_1 = (P^* \circ \zeta_1 + Q^* \circ \zeta_1 \cdot \pi) + Q^* \circ \zeta_1 \circ (1 - \pi) \in \mathfrak{V}^{\sim} + \mathfrak{M}^{\sim} = (\mathfrak{V} + \mathfrak{M})^{\sim}.$$

(2) Suppose finally that J is a Lindenstrauss space. Since J^{\sim} is isometric to the second dual of the Lindenstrauss space J it follows readily that there is a linear operator ψ from H to J^{\sim} such that $\psi|_{G} = \zeta_{0} - P^{*} \circ \zeta_{0}$ and $\|\psi\| = \|\zeta_{0} - P^{*} \circ \zeta_{0}\|$. Since

$$||P^*\circ\zeta_1+\psi||\leqslant \max(||P^*\circ\zeta_1||,|\psi|)\leqslant 1,$$

it follows that

 $\zeta_1 = (P^* \circ \zeta_1 + \psi) + (\zeta_1 - P^* \circ \zeta_1 - \psi) \in \mathfrak{V}^{\sim} + \mathfrak{M}^{\sim} = (\mathfrak{V} + \mathfrak{M})^{\sim}.$

This completes the proof.

The next theorem is close, in its spirit, to the results of Asimov [6], Michael and Pełczyński [10] and Rao [13].

THEOREM 5. Let J be a closed subspace of a Banach space E such that the quotient space E|J is separable and that the annihilator J^{\perp} is the range of a projection P satisfying, for some constant $\epsilon > 0$,

$$||f|| \ge \epsilon ||Pf|| + ||f - P^*f|| \quad (f \in E^*).$$
 (\$)

Then J is a summand if one of the following conditions is satisfied:

(1) the quotient space E|J has the bounded approximation property, that is, the identity operator in E|J is in the strong closure of a bounded set of finite rank operators

(2) J is a Lindenstrauss space.

Proof. On the basis of (\$) and the Krein-Smulian theorem it is easy to prove that the convex hull of $\epsilon^{-1}(U^0 \cap J^{\perp}) \cup (1 - P)(U^0)$ is weak* closed where U^0 is the unit ball of E^* . Therefore there is a norm on E which is equivalent to the original norm and coincides with the original norm on J and for which the relation, corresponding to (\$), is valid with $\epsilon = 1$. Thus it is assumed without loss of generality that J is an M-ideal.

(1) Suppose that E/J has the bounded approximation property. Then in view of separability there is a sequence $\{\pi_n\}$ of finite rank operators, converging strongly to the identity. Consider the space c(E) of *E*-valued converging sequences. The spaces c(J) and c(E/J) are defined correspondingly. It is readily shown that c(J) is considered as an *M*-ideal of c(E) and that c(E)/c(J) is canonically identified with c(E/J). Consider the subspace \mathfrak{F} of c(E/J), consisting of vectors $\{\hat{x}_n\}$ such that $\hat{x}_{n+1} - \hat{x}_n$ belongs to the range of $\pi_{n+1} - \pi_n$ for every $n \ge 1$. The correspondence $\Pi_m\{\hat{x}_n\} := \{\hat{y}_n\}$, defined by $\hat{y}_n = \hat{x}_{\min[n,m]}$, is a linear projection in \mathfrak{F} with $||\Pi_m|| \le 1$. Obviously Π_m converges strongly to the identity in \mathfrak{F} . Then successive application of Proposition 4 (1) shows, as in (2) below, that there is a linear lifting Φ from \mathfrak{F} to c(E). Since for each \hat{x} in E/J the sequence $\{\pi_n(\hat{x})\}$ belongs to \mathfrak{F} the linear operator $\zeta(\hat{x})$, defined as the valued of $\Phi(\{\pi_n(x)\})$ at infinity, gives rise to a linear lifting from E/J to E.

(2) Suppose that J is a Lindenstrauss space. Successive approximation of Proposition 4 (2) shows that there is a sequence $\{G_n\}$ of finite-dimensional

subspaces of E/J such that $G_n \subseteq G_{n+1}$ and $\bigcup_{n=1}^{\infty} G_n$ is dense in E/J, and there is a sequence $\{\zeta_n\}$ such that ζ_n is a linear lifting from G_n with $||\zeta_n|| \le 1$ and $||\zeta_n - \zeta_{n+1}|_{G_n} || \le \frac{1}{2^n}$. Then the limit ζ of ζ_n can be unambiguously defined on $\bigcup_{n=1}^{\infty} G_n$. Since $||\zeta|| \le 1$, the continuous extension of ζ gives a desired linear lifting from E/J. This completes the proof.

The above proof for (1) is inspired by a method in Pełczyński and Wojtaszczyk [12].

References

- 1. E. M. ALFSEN AND E. G. EFFROS, Structure in real Banach spaces I-II, Ann. Math. 96 (1972), 98–173.
- 2. E. M. ALESEN AND B. HIRSBERG, On dominated extensions in linear subspaces of C(X), *Pacific J. Math.* **36** (1971), 567–584.
- 3. T. B. ANDERSEN, On dominated extensions of continuous affine functions on split faces, *Math. Scand.* 29 (1971), 298–306.
- 4. T. ANDO, On fundamental properties of a Banach space with a cone, *Pacific J. Math.* **12** (1962), 1163–1169.
- 5. T. ANDO, Closed range theorems for convex sets and linear liftings, *Pacific J. Math.* 44 (1973), 393–410.
- L. ASIMOV, Affine selections on simplicially split convex sets, J. London Math. Soc. 6 (1973), 533-538.
- 7. E. BRIEM, Restrictions of subspaces of C(X), Invent. Math. 10 (1970), 288–297.
- E. BRIEM AND M. RAO, Normpreserving extensions in subspaces of C(X), Pacific J. Math. 42 (1972), 581–587.
- 9. J. LINDENSTRAUSS, Extension of compact operators, *Mem. Amer. Math. Soc.* 48 (1964), 1–112.
- E. MICHAEL AND A. PEŁCZYŃSKI, A linear extension theorem, *Illinois J. Math.* 11 (1967), 563–579.
- K.-F. Ny, The duality of partially ordered Banach spaces, Proc. London Math. Soc. 19 (1969), 267–288.
- A. PEŁCZYŃSKI AND P. WOJTASZCZYK, Banach spaces with finite dimensional expansions of identity and universal bases of finite dimensional subspaces, *Studia Math.* 40 (1971), 91–108.
- 13. M. RAO, On simultaneous extensions, Invent. Math. 13 (1971), 284-294.