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1. INTRODUCTION

Several important properties in theory of Banach spaces can be formu
lated in terms of nonemptiness of a finite number of closed convex subsets.
For instance, a Banach space, ordered with a closed cone K, is directed if
and only if the intersection K n (x + K) is nonempty for every vector x.
As another example, consider a Banach space E and a closed subspace 1.
Then the image of a closed convex subset S under the quotient map from E
to Elf is closed if and only if the intersection S n (x + f) is nonempty for
every x in the closure of 5 J.

In discussing nonemptiness of intersection of convex subsets of a Banach
space E, it is usually convenient to imbed E canonically into the second dual
E** and to use weak**, that is, a(E**, E*), compactness of the unit ball
of E**. Given closed convex subsets Si (i ~c= I, 2) of E, sometimes the non
emptiness of 5 1- n S2- is guaranteed quite easily, where Si- denotes the
weak** closure of SF. The problem studied in this paper is to find a condition
which transfers the nonemptiness of S1- n 5 2-to that of 51 n 52 .

In the next section we shall formulate a useful sufficient condition for
nonemptiness of intersection (Theorem I), which can be viewed as an
abstract version of the so-called 'T'-technique." In the subsequent section
this theorem is applied to reproduce various known results on images of
closed convex sets under a quotient map. These results can be considered
as general versions of the so-called "dominated extension theorems."

Tn the final section we shall treat a closed subspace f of a Banach space E
whose weak** closure is the range of a projection in E**. The problem in
this section is to find a condition which assures that J itself is the range of
a projection in E. On the basis of tensor product method, a variant of
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Theorem 1 is effectively applied to yield general versions (Theorem 5) of
the so-called "linear extension theorems."

2. NONEMPTY INTERSECTION

Let E be a (real or complex) Banach space with closed unit ball U.
Before going into the subject, let us recall some computational rules for

weak** closure. As stated in Introduction, the weak** closure 8~ is the
closure of 8 in E** with respect to the topology a(E**, E*) while 8-- denotes
the norm closure. Obviously U~ is the closed unit ball of the second dual
E**, and (8 + U)~ = 8~ T U~ and 8~ n E = 8- for every convex subset 8.
Given convex subsets 81 and 82 of E, if 81~ has nonempty intersection with 82~

then by the Hahn-Banach theorem 8 1 + EU has non-empty intersection
with 8 2 for every E > O. If 81 has nonempty intersection with the interior
of 82 then by the bipolar theorem (SI n S2)~ coincides with 81~ n S2~'

THEOREM 1. Let 8i (i = 1, 2) be closed convex subsets of E. If SI ~ n 82~

is nonemp(v and if there are constants 0 :c( ex, j3 and 0 :c( 'Y < 1 such that

(A > 0), (*)

then 81 n 82 is nonempty. Iffurther j3 == 0 then

SI n (S2 + AU) C 81 n 8 2 + ex'A(l - p)-l U (A> 0,1 > P > 'Y and ex' > ex).

Proof. Take p with 'Y < P < 1 and ex' with ex < ex'. Fix X o in
Sl n (S2 -t--- AU). Suppose that X o '00" X n can be chosen so as to satisfy the
conditions:

where

Since by (*)

and
j-l

OJ = TI (1 + j3Apk).
k~O

it follows that (xn + exAonpnu)~ has nonempty intersection with
On+1{Sl n (82 + Apn+lU)}~. Since Xn -1 ex'Aonpnu is a convex neighborhood
of X n + exAOnpnu, there is a vector, say Xn+l, in the intersection of
Xn + ex'AOnP"U and 0n+l{81 n (S2 + Apn+lU)}. Then Xn+l - Xn E ex'Aonpnu.
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This completes the inductive construction of a sequence {x;}. Since
L:~o pn = (I - p)-l and I cC:; an ,~: exp(BA(l -- p)-l), {a;:;lxn} is a Cauchy
sequence such that a;:;lxn EO 51 and Ii a~;Jx" - 52 !i < Ap". The limit x must
belong to 51 n 52 . Finally if f3 0 then 0" c_c I, hence

x" - X n - l i ():',\ L pI!
n=O

o:'A(1

This completes the proof.
Let us give some elementary applications of Theorem I to theory of

ordered Banach spaces. Now let E be a real Banach space, ordered by the
closed convex cone E~ .

If E-I-- generates E**, that is, E** == E:- -- E+- then E-I- generates E.

In fact, it is readily shown by contradiction that

for some y > o.

Take x in E. Then

(A > 0).

Now Theorem I guarantees the nonemptiness of (x -+- E-I-) n E-I- , or equiva-
lently x EO E - E I •

If E** becomes a vector lattice (Riesz space) under the order induced by
E-I-N and it' (UN --- E.1N) n (U- -+- E-I-N) is bounded, then E has the Riesz
interpolation property, that is, Xi ,,;; y; (i, j ~= I, 2) in E implies the existence
of z in E with Xi ,::; ze.::; y, (i == I, 2).

In fact, with 51 = (Xl --t- E.J n (X 2 -I- E-I-) and 52 = (J'r - E:) n (.1"2 - E:)
it is readily shown that

and

Hence 51 N n 52 N is nonempty and for some 0: > 0,

(,\ 0).

Now Theorem I guarantees nonemptiness of 51 n 52' or equivalently the
existence of z in question.

In this way Theorem I can provide a unified way of proof for various
duality properties developed, for instance, in [4] and [I I].
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Again E is a Banach space with closed unit ball U. Let J be a closed
subspace and let 7 denote the quotient map from E to EIJ. F- denotes the
annihilator of J in E*. The problem in this section is to find conditions which
guarantee the closedness of 7(S) for a closed convex subset S of E. For this
purpose, it is convenient to convert Theorem 1 to the following form.

PROPOSITION 2. Let Si (i == 1,2) be closed conrex subsets of E. If
J r:;: Sl r:;: S2~ + J~ and if there are constants °< ex and °,,;; y < 1 such that

then

(A :> 0), (**)

(A :> 0, 1 :> p :> y).

In particular, 7(Sl) is contained in 7(S2)'

Proof Take x in Sl and let So x + J. Then x EO S2~ + J~ implies
So~ n S2~ 0. Now by (**)

which implies

Then Theorem I yields

X E So n (S2 + AU) r:;: S2 + exA(l - p)-l (J n U).

This completes the proof.
As an immediate application of Proposition 1 to theory of ordered Banach

spaces, let us take up the following proposition.

If a closed cone E+ of a real Banach space E satisfies the condition that for
some constant ex ?" 1 and for every positire linear functional f

Ilf - [O,j] n P II ::s; ex ]if - P Ii,

}\'here [0, f] denotes the set {g E E*; °::;; g ::s; f} then the image 7(E+) is closed.

In fact, the bipolar theorem converts the above condition to the following
inclusion relation:
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Apply Proposition I with S1= (E+ +- f)- and S~ E i , to yield
(E+ +- f)- c::; E: -I- f.

A closed subspace is called a summand if it is the range of a (continuous
linear) projection. In this respect a closed subspace f of E is called an ideal
if its annihilator P is a summand of E*. Remark that f is an ideal if and
only if there is a (continuous linear) operator T from E to the second dual
E** such that T vanishes on f and x Tx belongs to J- for every x Ee E.
In fact, if P is a projection from E* to f then the restriction of p* to E
possesses the required properties. Conversely if T is an operator in question
and if ep denotes the canonical imbedding of E* to the third dual E*** then
T*c ep is a projection to f' .

Now let f be an ideal and let P be a projection from t* to F. A closed
convex subset S of E is said to be splittable, more precisely P-splittable, if it
contains the origin and if P*x .l" PC')' belongs to S- for every x, y in S.

Remark (ef. [5]) that S is splittable if and only if the polar So coincides with
the norm closed convex hull of peSO) u Q(SO) where Q I P.

A basic fact in [5] is that if S, (i 1, 2) are splittable then

(5\ i- f)- n (S2 + f)- n {S1 n (S2 + EU)--

exVJ- n U-) - 5\- n (S2 ,XEU)-

- AU;

(A 0, E :> 0). (#)

where ex = 1- P]. Further if (S1 n S2)- coincides with S1- n S~- then E

can be put equal to O.
Let us reprove a main result of [5]:

PROPOSlTION 3. Let S, (i 1, 2) be splittable. Then

(l) T(SJ is closed.

(2) Ir(S1 n S2)- c. S1- n S2- then T(S1)- n T(S~)- T(S1 n S2)'

(3) II 1-- P II ,( I then T(S1) n T(S2) c::; T(S1 n (S2 -;- EU)) (E 0).

Proof (1) follows (2) with S1 = S2' (2) and (3) result from (#) by
Proposition 2, applied to (S1 + f)- n (S2 + f)- and S1 n (S2 -+- EU)-.

Proposition 3 unifies so-called "dominated extension theorems" of various
types developed in [2, 3, 7, 8] through suitable construction of P from an
operator T as remarked earlier.

A closed subspace f is called an M-ideal if its annihilator P is the range
of a projection P such that

IIId = II PIli + II! - Pf!l
or equivalently

II x II = max(11 P*x II, II x - P*x]i)

(fEe E*),

(x E E**).
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Alfsen and Effros [1] showed that a projection with this property is uniquely
determined, and that an M-ideal I can be characterized by the following
ball-intersection properties: if open balls 0; (i = I, ... , n) have nonempty
intersection and if each has nonempty intersection with ] then
In 0 1 n O2 n ... n On is nonempty.

[t is clear that an ideal] is an M-ideal if and only if the unit ball is
splittable. Now it follows as an immediate consequence of Proposition 3:

Il] is an M-ideal then T(U) is closed.

Application of Proposition 3 to various problems in ordered Banach
spaces can be found in [5].

Finally let us give a simple proof to a result in [5] on the basis of Proposi
tion 2.

If I is an M-ideal and if N is a closed subspace such that for some constant

o y<l

Ii Pg - P- n NJ..II < y Ii g - Pg II (g E N J
),

thenfor x EN with il T(x)11 < 1 there is yEN such that II y II < 1and T(X) T(Y).

In fact, the bipolar theorem converts the condition to the relation

N n (I + U)- n (l + A)U C 2A{U- n (N n I)-} + (l + yA) u~.

Now apply Proposition 2 with S1 = N n (I + U)- and S2 = U and with
N n ] instead of ].

4. LINEAR LIFTING

An ideal I of a Banach space E becomes a summand if and only if the
quotient map T from E to Ell has a (continuous) right inverse. Indeed,
a right inverse ~ gives rise to the projection ~ 0 T whose kernel coincides
with 1. The problem in this section is to find conditions which assure the
existence of a right inverse.

When H is a subspace of Ell, a (continuous linear) operator if; from H
to E is called a linear lifting if T 0 if; is the identity on H. Let '13(H, E) denote
the space of (continuous linear) operators from H to E, equipped with
operator norm. If H is finite dimensional, the second dual of '13(H, E) is
identified with '13(H, E* *).

A Banach space is called a Lindenstrauss space if its second dual is isometric
to the space of continuous functions on a compact Hausdorff space.
Lindenstrauss [9] gave an intrinsic characterization of such a space by the
following intersection property: a finite number of closed balls has nonempty
intersection whenever every pair among them has non-empty intersection.
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PROPOSITION 4. Let J be an ivI-ideal alld let H bc a tinitc dimensional
subspace oj' EU Suppose that ~o is a linear lifting from a subspace G of H
with 1 ~o 1. Then for each E 0 there is a linear lifting ~ from H sud/
that! ( I and So -- S!" E ij' one oj' the following conditions is
satisfied:

(I) there is a projection rrfrom If to G with 7T 1.

(2) J is a Lindenstrauss space.

Proof: Since J is an M-ideal its annihilator JI is the range of a (uniquely
determined) projection P such that

x == max([i P*x

Consider two subspaces in 2.3(H, E)

x -- P*x Ii) (x t= E'*).

9Jl == {if;; ran(11) c: J and ker(if;)2 G} and 9i =". UI; ran(0) c: .I},

and let ~\ denote the closed unit ball of ~)(H, E). As shown in [5], under the
identification of ~,(H, E**) with the second dual of 'l3(H, E), the weak*"
closures of ~lJl and 9i coincide, respectively, with

and {if;; ran( <p) c: J-J.

Since ifJ !-->- p* 0 If; defines a projection in "B(H, E**) with kernel 9i- such that

',I; -- Ill'lXi , P' ·c " II; I ,I; _ p* 1/' I')C"( ~- l.-. \i· I I:, .., ,) i (III t= ~,(H, E**»,

9i is an At-ideal. Take a linear idling ~I from H to F with Sl (; ~IJ •

Suppose that S1 belongs to (~l -:- ~lJl)-. Then there is an operator ~2 In

(SI ' 9Jl) (\ (1, Ej2)~\, which is contained in p.B + 91)' (\ (l E/2)1.!3.
Since 91 is an M-ideal, in view of Propositions 2 and 3 (~.B -j. 91)- (\ (1 + E!2)~\

is contained in ~\ + E(9i (\ ~\). Thus there is S such that S I,
il S S2 E and S- S2 (, 91. Then S meets the requirement of the
assertion. Now it remains to prove that SI is contained in (:'15 +- 9J1)-.

(1) Suppose that there is a projection 7T from H to G with ii 7T

Then it follows with Q = 1 - P that

Sl (p* G Sl + Q* c S1 . 77) + Q* 0 Sl 0 (1 - 77) t= :'15- + ~IJ1- == (:'15 I· ~lJ1)-.

(2) Suppose finally that J is a Lindenstrauss space. Since J- is isometric
to the second dual of the Lindenstrauss space J it follows readily that there
is a linear operator if} from H to J- such that if; Ie; So -- p* G So and
:1 if; = So - p* = Su il. Since

max(il p* a ~1! if; i )
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This completes the proof.
The next theorem is close, in its spirit, to the results of Asimov [6], Michael

and Pelczynski [10] and Rao [13].

THEOREM 5. Let 1 be a closed subspace of a Banach space E such that
the quotient space Ell is separable and that the annihilator J1- is the range of
a projection P satisfying, for some constant E > 0,

~? Ell Pfl: + ilf ~- P*fll (fE E*). ($)

Then 1 is a summand if one of the following conditions is satisfied:

(1) the quotient space Ell has the bounded approximation property,
that is, the identity operator in Ell is in the strong closure of a bounded set of
finite rank operators

(2) 1 is a Lindenstrauss space.

Proof On the basis of ($) and the Krein-Smulian theorem it is easy to
prove that the convex hull of c 1(UO n P) U (1 - P)(UO) is weak* closed
where UO is the unit ball of E*. Therefore there is a norm on E which is
equivalent to the original norm and coincides with the original norm on 1
and for which the relation, corresponding to ($), is valid with E =~ 1. Thus
it is assumed without loss of generality that 1 is an M-ideaI.

(I) Suppose that Ell has the bounded approximation property. Then
in view of separability there is a sequence {7Tn} of finite rank operators,
converging strongly to the identity. Consider the space c(E) of E-valued
converging sequences. The spaces c(l) and c(Ell) are defined correspondingly.
It is readily shown that c(l) is considered as an M-ideal of c(E) and that
c(E)/c(l) is canonically identified with c(Ell). Consider the subspace ty of
c(Ell), consisting of vectors {xn} such that xn +1 -- xn belongs to the range
of 7T II 1 - 7Tn for every n ~.~ 1. The correspondence JIm{.f:n;cc {Yn}, defined
by 5'n= xminln,m] , is a linear projection in ty with Ii JIm I: 1. Obviously
JIm converges strongly to the identity in lY. Then successive application of
Proposition 4 (I) shows, as in (2) below, that there is a linear lifting ifJ from lY
to c(E). Since for each x in Ell the sequence {7T n(X)} belongs to ty the linear
operator ~(x), detined as the valued of ifJ({7T,.ex)}) at infinity, gives rise to
a linear lifting from Ell to E.

(2) Suppose that 1 is a Lindenstrauss space. Successive approximation
of Proposition 4 (2) shows that there is a sequence {G n } of tinite-dimensional
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subspaces of Ell such that Gn c: Gn H and U~l Gn is dense in Ell, and
there is a sequence {~n} such that ~n is a linear lifting from Gn with I: ~n - I
and II ~n .~. ~nl1 1(; II ~ }". Then the limit' of 'n can be unambiguously
defined on U~~l Gn . Since ~ II I, the continuous extension of ~ gives
a desired linear lifting from Ell. This completes the proof.

The above proof for (I) is inspired by a method in Pelczynski and
Wojtaszczyk [12].
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